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This paper explores some aspect of energy demands for single-
degree-of-freedom (SDOF) systems. Energy response time histor-
ies for simple pulses or sine-wave ground excitations are con-
structed and the behaviour of each contributing factor to the energy
balance is studied. Examples are used to illustrate the fundamental
behaviour of the kinetic energy, strain energy, energy dissipated
through normal damping, energy dissipated through permanent
deformations, and total input energy, the latter always being equal
to the sum of the others throughout the dynamic response. It is
found that: firstly, energy methods produce good indicators of the
nonlinear inelastic seismic structural performance; secondly, the
absolute energy method has some practical shortcomings, parti-
cularly regarding the definition of input and kinetic energies;
thirdly, the relative energy method has a closer relationship to the
parameters of engineering interest; and finally, if only hysteretic
energy is of interest, both the absolute and relative energy methods
can be used, unless normalization by input energy is sought.
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1. Introductiox_l

A number of design methods are currently available to
assist structural engineers in providing earthquake resistant
structures. The dynamic elastic modal analysis and static-
equivalent lateral seismic force procedure typically rec-
ommended by most building codes are undeniably the most
popular, although in some unusual circumstances. linear
elastic or nonlinear inelastic time-history analyses are also
used. All these methods essentially concentrate on estab-
lishing a peak demand for a particular design parameter,
such as maximum displacement, ductility, and member
forces. Other important aspects of seismic performance,
such as cumulative cyclic ductility, number of yielding
reversals. incremental collapse, low-cycle fatigue, energy
dissipation capacity etc., are only indirectly considered in
design by semi-arbitrary restrictions on the magnitude of
the permissible strength reductions from the elastic-
response level. For example, the 1990 edition of the
National Building Code of Canada' uses a static-equivalent
lateral seismic force specified as

where Ve is the equivalent lateral seismic force representing
elastic response, R is a force modification factor, and
U= 0.6 is a calibration factor. This design basis is essen-
tially equivalent to an inelastic design response spectra
where the permissible strength reduction R corresponds to
a tolerated peak displacement ductility demand for a given
type of structural system. However, the code-specified R
values for various types of structural systems are set such
that they only indirectly consider the particular cyclic ulti-
mate performance germane to each system.

While safe and conservative, these current seismic-resist-
ant design methods are implictly addressing the needs of
new construction. Therefore, when investigating the
adequacy of existing structures against earthquakes, parti-
cularly in regions of low and moderate seismicity, tra-
ditional design and analysis methods may lead to overly
conservative assessments of the demand as they fail to pro-
vide a comprehensive description of the required ultimate
cyclic resistance. Unfortunately, no simple method cur-
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rently exists which could be directly used by designers to
this end.

Recently, energy-based methods have regained attention,
and they could offer one possible solution to this problem
(as well as to many others). These methods are based on
the premise that the energy demand during an earthquake
(or an ensemble of earthquakes) can be predicted and that
the energy supply of a structural element (or a structural
system) can be established. For a satisfactory design, the
energy supply should be larger than the energy demand>?.
Therefore, requiring less effort than complex nonlinear
inelastic analyses, energy-based methods could provide
more insight into the ultimate cyclic seismic performance
than traditional design methods. However, much remains to
be learned on seismic-related energy demands before these
could be used in practice.

This paper explores some aspects of energy demands for
single-degree-of-freedom (SDOF) systems, and, in parti-
cular, whether absolute or relative energy methods should
be used. Starting from the basic idea that a typical dynamic
earthquake excitation can be conceptuaily described as a
complex sequence of pulses or sine waves of various dur-
ations, frequencies and intensities, energy response time-
histories for simple pulses or sine-wave ground excitations
are constructed and the behaviour of each contributing fac-
tor to the energy balance is studied. In a subsequent paper,
using principles exposed herein, energy spectra will be con-
structed and a procedure to predict structural energy
demand under real seismic excitation from the energy spec-
tral results obtained for simple pattern excitations will be
presented.

2. Energy methods: concepts

2.1, Literature review

An energy method to quantify seismic structural response
was apparently first proposed by Housner®. He pointed out
that a ground motion effectively feeds energy into a given
structure, some of this energy being dissipated through
damping and the remainder stored in the structure in the
forms of kinetic energy (i.e. motion of the mass) and strain
energy (i.e. deformation of the structural members). Based
on the idea (in 1956) that a safe and economical seismic-
resistant design should proceed through plastic analysis or
limit-design, while allowing permanent deformations to
occur without failure of a member, it was suggested that
the design be tied to the concept of plastic energy, E,. dissi-
pated by structure and related to the inelastic deformation
by

E =E-E, (2)

where E, is the maximum Kkinetic energy which would be
obtained if the structure behaved completely elastically, and
E, is the elastic energy of the structure when it reaches
yield point. Although this energy equation was rudimen-
tary. Housner's paper formulated the fundamental concept
that at any instant the sum of the Kinetic energy, strain
energy. energy dissipated through normal damping, and
energy dissipated through permanent deformation, must be
equal to the total energy input. This provided the initial
impetus to the later developments of energy methods in
earthquake engineering.

Since the 1960s, the seismic nonlinear inelastic behav-
jour of structures has been paid considerable attention, but
among the many researchers who addressed various aspects

of the earthquake-resistant design problem. few even con-
sidered the energy concepts proposed by Housner other
than indirectly. However, in the 1980, this trend reversed.
In particular, McKevitt e al.’ proposed a simple energy
method for seismic structural design, Kato and Akiyama®
used an energy method based on Housner’s equation* for
the design of steel buildings. Zahrah and Hall” studied seis-
mic energy absorption in SDOF systems. and Tembulkar
and Nau® investigated seismic energy dissipation capacity
for inelastic modelling.

Uang and Bertero® recently provided two mathematically
consistent definitions of energy methods: they emphasized
the physical meaning of each term in the energy balance
equations and investigated the reliability of relative-energy
and absolute-energy methods to predict the energy dissi-
pation capacity of a given structural member or system.
The subject subsequently attracted the attention of many
researchers as evidenced by the recently published literature
investigating energy-based concepts in earthquake-resistant
design'®-'". Since the energy method proposed by Uang and
Bertero® is clearly defined and has already received some
acceptance, this paper essentially uses the same energy
terms and definitions; these will be presented in a later sec-
tion.

2.2. Single-degree-of-freedom inelastic dynamic
equilibrium
The single-degree-of-freedom (SDOF) system is not only
the simplest model of structural dynamics, but also the most
fundamental model used in seismic response investigations.
Its usefulness is foremost in the modal analysis of multiple-
degree-of-freedom (MDOF) systems where complex struc-
tures can be decomposed into and analysed as a number of
equivalent SDOFs. More importantly, however, concepts
first formulated based on the study of SDOF systems have
become the building blocks on which earthquake engineer-
ing is founded.

For a lumped-mass SDOF system subjected to 2 ground
excitation, the equation of motion can be written as's

i + 2wéi + wu =i, (3)

where w is the natural circular frequency of the system
(w* = K/M), & is the viscous damping ratio which is equal
to C/2Mw (and usually expressed as a fraction of the criti-
cal damping ratio), M is the mass of the system, Cis its
damping coefficient, and K its stiffness. Also, u, it and i,
respectively, denote the displacement, velocity and acceler-
ation of the system relative to its base, and i, stands for
the ground acceleration relative to a fixed reference axis.

However, since buildings designed for code forces are
expected to undergo inelastic response during earthquakes,
the above equation can be rewritten in a nondimensional
form as'’

w2
it 208+ o= - 4)
where the ductility ratio, u, is defined by
w=ulA, (5)
7 is a strength ratio defined as

n = R/ (Milgma) (6)
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and R, and A, are, respectively, the yield strength and yield
displacement of a structural nonlinear inelastic behaviour
model (for the bilinear elastoperfectly plastic model, these
two latter parameters completely define this hysteretic
model).

Hence, nonlinear systems having the same natural fre-
quency, damping, hysteretic model, and strength ratio, n,
will share the same ductility response if subjected to the
same ground excitation. This response can be determined
through simple analysis, and ductility spectra can be sub-
sequently constructed!®.

2.3. Uang and Bertero’s absolute and relative energy
methods
Uang and Bertero proposed two types of energy methods,
based, respectively, on absolute and relative formulations
of the energy equation. Each approach, although derived
from the same equation of dynamic equilibrium for the
SDOF system, leads to a specific and consistent set of
energy terms and physical interpretations.

The absolute energy equation can be summarized as

E=E,+E,+E,=E, +E,+E, +E, @)

The first term of the above equation is referred to as the
‘absolute’ kinetic energy, E,, since the absolute velocity
(&, =t + 1) is used in its calculation, and is equal to

E, = (Mi®)]2 3)

The second term in equation (7) relates to the damping
energy, E,, which is

Ed=fC123 dr ' 9)

and the third term in equation (7) is defined as the absorbed
energy, E,, which is composed of recoverable elastic strain
energy, E,, and irrecoverable hysteretic energy, E,. Thus

Ea=deu=EI+E,, (10)

where E; is equal to F?/2K, F is the structural restoring
force, and E, is computed as the sum of the areas delimited
by each loop traced by the force-displacement relationship
of a system as it undergoes nonlinear inelastic response.

The left-hand side term in equation (7) is defined as the
absolute input energy, E,

Ei=jMa,dug (11)

since the inertia force, Mii, applied to the structure is
expressed in terms of the total acceleration relative to,a
fixed reference axis. This force is equal to the restoring
force plus the damping force, and is also the total force
applied to the structure’s foundation. Therefore E; rep-
resents the work done by the total base shear, Mii, on the
foundation’s displacement, u,.
The relative energy equation can be expressed as

E}:-—jMagdu=E}(+Ed+E:+E;. (12)

where the ‘relative’ kinetic energy, E,, can be defined as
E, = (Mii*)/2 (13)

and all other energy terms are as defined above. Note that
the relative structural velocity is used to calculate the rela-
tive kinetic energy, and that the left-hand term of equation
(12) is the relative input energy, E,, which represents the
work done by the equivalent static lateral force, -Mii,, on
the relative displacement, u. A full derivation of these equa-
tions has been given by Uang and Bertero®. However. it is
important to report that, based on the physical interpretation
of these equations, Uang and Bertero have inferred that
only the absolute energy method correctly embodies the
physics of this problem, and should be used.

In both of the above methods, the input energy is always
equal to the sum of the kinetic, damping and absorbed ener-
gies, i.e. energy balance always exists. This principle (the
essence of all energy methods) has been used to assess the
accuracy of calculations and validate computer results.

For example, using the above equations for an undamped
linear elastic SDOF system with mass of M and stiffness
of K subjected to a suddenly applied constant ground accel-
eration, the absolute kinetic energy is

M..z 1 d
Ek=%'1 (; sinwt — t) (14)

The recoverable strain energy is

M..:)_
E = 2:; (1 = coswt)? (15)

The absolute input energy, by substitution of it and iz, into
equation (11), is '

P 1 1
E = Mii (E—f—sinwt——:coswt+~a7) (16)
w w” -

for at rest initial conditions, which indeed verifies the
energy balance equation.
Similarly, the relative kinetic energy is

L

= ——3 sin’ 17
2w Sin-wt ( )

E;

and the relative input energy is

E;:AZ;;(I - coswt) (18)

and the energy balance can still be analytically verified (i.e.
the sum of E,, E,, E, and E, is equal to E)). It is noteworthy
that for an undamped elastic SDOF system, the maximum
E, is equal to the maximum E, during the excitation.
Alternatively, instead of using a closed-form solution, a
step-by-step numerical procedure can be adopted, and the
energy balance is verified computationally provided the
integration step is chosen to be sufficiently small. Any
resulting imbalance reflects the inaccuracy of the calcu-
lations which can be remedied by further refinements in the
size of the integration step. In this study, a linear acceler-
ation step-by-step analysis procedure has been adopted, as
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implemented in the NONSPEC nonlinear inelastic analysis
computer program'®.

3. Energy response to rectangular pulse
excitation

Since a typical earthquake excitation could be interpreted
as a complex sequence of pulses or sine waves of various
durations, frequencies and intensities, structural responses
to such simple patterns of dynamic excitations need to be
studied first. This will allow the construction of energy
spectra which could facilitate the prediction of structural
energy demand under real seismic excitations, and also the
identification of some valuable fundamental principles
which could not be easily extracted and understood from
the study of more complex excitations. Responses to simple
impulses are investigated in this section, while responses
to sine wave loading will be studied in the next section.

By comparing the maximum displacement responses of
an elastoplastic SDOF system subjected to pulses of differ-
ent shapes?, it can be seen that the rectangular pulse exci-
tation leads to the largest displacement response. Based on
this, and for simplicity, the rectangular pulse loading has
been selected for this study.

From the linear elastic solution of the equation of motion
for 2 SDOF subjected to a rectangular impulsive load!®°,
it is well known that a maximum resulting displacement of
2Mii /K will be obtained if a constant force is suddenly
applied to this system and sustained for a sufficiently long
time, i.e. exactly twice the value which would be obtained
if the same force was applied statically. Using the notation
previously presented, this implies that systems with n = 2
are ensured a linear-elastic response when subjected to a
rectangular impulse.

3.]. Case studies on displacement and energy response
time histories

Here, as well as in the next section, an arbitrarily selected
rectangular pulse is used in the analyses. Its peak ground
acceleration, ifgma, Of 1 m/s2, and duration, 1, of 0.5 s, are
sufficient to define it. Normalization considerations to
unconstrain the characteristics of this rectangular pulse
excitation will be introduced in a subsequent paper.

It is also noteworthy that the ground velocity and dis-
placement corresponding t0 a rectangular pulse are not
base-corrected, contrary to most earthquake records. In the-
ory, if base correction was performed to the rectangular
pulse ground excitation, the velocity and displacement of
the supporting foundation would return to zero at the end of
the pulse, instead of being launched into a constant velocity
motion once the pulse is over. Simple attempts to base-
correct a constant amplitude rectangular pulse would rap-
idly demonstrate that it cannot logically be done. Only
more complex forms of excitation, notably not producing
a progressively increasing velocity throughout when inté-
grated (like an earthquake excitation), can be base-cor-
rected. However, at this point, to keep things simple, and
because, as will be demonstrated later, only some less
meaningful energy terms are somewhat affected by the
absence of a base-corrected input time history, base-correc-
tion will be ignored in this paper.

To illustrate important conceptual differences in the
energy response obtained when considering the relative or
absolute energy criteria, a step-by-step inelastic time-his-

tory analysis is conducted for a SDOF system having an
arbitrarily selected mass of 1 kg and subjected to the afore-
mentioned pulse base-excitation. For this example, the
structural period, T, of the SDOF is 0.5 s, and the strength
ratio, 7, is 1.0. To illustrate the impact of damping, the
analysis is first conducted for the undamped system, and
then repeated with a damping coefficient, & equal to 2%
of critical. The resulting relative displacement time histor-
ies, as well as all the absolute and relative energy time
histories are presented in Figures I-3. The individual input
energy, kinetic energy. hysteretic energy and damping
energy time history responses are displayed on the same
plot to provide perspective.

3.1.1. Energy response: undamped example

For this SDOF system, the resulting displacement ductility
ratio p is 6.3. The structure responds elastically only when
its displacement does not exceed the yield displacement.
From the relative displacement history shown in Figure la,
it can be seen that the SDOF system starts to behave inelas-
tically at + = 0.1s, and eventually oscillates elastically
about a ‘plastic residual offset’ subsequently to the end of
the excitation. It is obvious that, in this case, the maximum
displacement ductility demand p is a relatively good dam-
age index reflecting damage to the structure when it
exceeds its yield displacement. An absolute displacement
time history has been presented elsewhere?!. However, it
should be noted that, since the base correction has not been
done, the absolute displacement dominates in magnitude
and progressively makes the relative displacement contri-
bution to the total displacement imperceptible after the
pulse excitation.

Both the relative kinetic and recoverable strain energies
(Figure 2a) will first rapidly increase to reach at the onset
of yielding, a maximum value which will be sustained for
the remaining duration of the pulse loading. After termin-
ation of the pulse load, they will start to fluctuate in a recip-
rocating exchange of energy, in accordance with the classic
free-vibration response of an undamped spring. In this
phase of oscillation, when the structure reaches its
maximum displacement, the strain energy is at a maximum,
while the kinetic energy is zero. Alternatively, when the
structure crosses the new static equilibrium point, the strain
energy is zero, while the Kinetic energy is at a maximum.
In the absence of damping, the maximum values of the
kinetic and strain energies remain equal and constant when
the structure oscillates.

As the structure retains a plastic residual deformation at
the end of the pulse excitation, the hysteretic energy
reaches and remains at a maximum constant value (Figure
2a), which can be related to the relative displacement
response. Note that the hysteretic energy is only due to the
structural inelastic deformation.

As also shown in Figure 2a, the relative input energy is
the sum of the relative kinetic, hysteretic and strain ener-
gies: damping energy is null here. Once the pulse excitation
is over, it can be seen that the input energy does not
change anymore.

In Figure 3a, results for the same SDOF system are pre-
sented, expressed in terms of absolute energies. For clarity
a different vertical scale is used. There, the strain and hys-
teretic energies are identical to those in Figure 2a, but the
kinetic and input energies are considerably different. Such
differences between the absolute and relative kinetic and
input energies are expected. For example, the equation of



Energy demands for SDOF systems: M. Bruneau and N. Wang 5

(a) 0.00

o
e

- Relative Displacement, u (m)
=3 )
8 8

_0.04 i\ 1 1 1 1 1 1 1
0 1 2 3 5 6 7 8 9 10
Time, t (s)
(b) 0.00
............................ A e
E s
s -0.01 -
o
§
'.g -0.02 |
a
S -003f
o
_0'04 1 1 1 " 1 1 1 1
0 1 2 3 5 6 7 8 9 10

Time, t (s)

Figure 1 Relative displacement time histories for SDOF (T=05s, n=1.0) subjected to rectangular pulse ground excitation: (a}

undamped case (£=0%); (b) damped case (£=2%)

absolute kinetic energy is based on the absolute velocity,
itself the sum of the relative velocity and the ground velo-
city (equation (8)); therefore the relative kinetic energy
could be considered as just a subset of the absolute one.
However, it is disconcerting to observe that the absolute
input energy includes a free vibration phase which persists
to fluctuate long after the termination of the pulse ground
excitation (i.e. when there is no more input excitation).
Moreover, in the free vibration range of response, the
maximum value of kinetic energy is not equal to that of
strain energy anymore, although energy balance still exists.

3.1.2.  Energy response: damped example
Analysis of the above SDOF is repeated with a damping
ratio, £ of 2%. In this case, the maximum displacement
ductility ratio u calculated is 5.5, slightly less than 6.3
obtained for the undamped case. Not surprisingly, as shown
in Figures 1b, 2b and 3b, the displacement response, as
well as kinetic energy and strain energy will progressively
attenuate as a function of the damping ratio.

From the relative energy time histories (Figure 2b), it
can be found that;

¢ All the nondamping energy values, including the relative
input energy, are reduced by the presence of damping

* The damped-out relative kinetic and strain energies are
converted directly to the dissipated damping energy

* The relative input energy remains constant after the exci-
tation

* Also, as before. in order to follow the interconversion of
kinetic and potential energy in the postloading range,
when £ is the maximum, E, must be zero

The fact that the gradually damped out kinetic and strain
energies are converted into damping energy, as observed
in Figure 2b, can be easily explained mathematically by
substituting equation (13) into equation (9). This gives

1 ZE' 1 |
Ed=f C—"dt=4w§f E, dt (19)
0 M o

which states that the damping energy at time 7 equals the
integral of the kinetic energy over the interval from O to ¢,
multiplied by a constant. Thus, when the kinetic and strain
energies are completely attenuated, the damping energy
will have reached its maximum.

In the light of the important effect of damping on the
overall energy distribution, a close scrutiny of the energy
results is warranted, particularly when comparing Figures
2b and 2a. This influence of the damping is illustrated in
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Figure 2 Relative energy time histories for SDOF (T=05s. 1
case (£=0%); (b) damped case (£=2%)

Table 1 by comparing each energy value at a time of 0.5 s,
1.0s and 10.0s. These three time comparison points are
selected as indicative of the structural response at three dis-
tinct stages: at the end of the pulse loading (0.5 s), and a
short and long period of time after termination of the pulse
excitation (1.0 s and 10.0 s, respectively). From Table 1, it
can be observed that in the presence of 2% damping, there
is approximately a 14% drop of the maximum sustained
hysteretic energy dissipated by the system. Thus, small
amounts of damping can significantly reduce the amount
of the hysteretic energy dissipated by the structure.

The absolute energy time histories are also constructed
in Figure 3b. Some observations can be summarized below:

e The strain, hysteretic and damping energies still remain
the same as in Figure 2b

e All the nondamping absolute energies (Figure 3a) are
also greater than those when damping exists (Figure 3b)

e As the nonbase-corrected ground velocity is used to cal-
culate the absolute kinetic energy, E, does not damp out
as quickly as E, in the free vibration phase; instead, it
fluctuates and finally converges to a constant value of
0.125 N.m which is equal to Mi;/2 when the relative
velocity reduces to O

= 1.0) subjected to rectangular pulse ground excitation: {(a)} undamped

o The absolute input energy behaves like the absolute kin-
etic energy. After reaching a peak at the end of the exci-
tation, it begins oscillating with decreasing amplitude and
eventually levels off to a constant

Obviously, the hysteretic energy for the simple case of a
system subjected to rectangular pulse excitation can be eas-
ily related to the maximum displacement ductility ratio
spectra, largely because the nonlinear component of the
response is not cyclic; displacement will reach a maximum
value in one direction and then fluctuate within the elastic
range around a plastic offset. Consequently, for a structural
bilinear force—displacement relationship model, the hyster-
etic energy equation can be written as

Ev=R, (s = A,) =R, (n = 1) A,

where Upge = A, and R, = MMilgnax- Using this equation,
hysteretic energy values can be checked against those in
existing displacement ductility ratio spectra®®. For example,
if the period of an undamped system with 7 value of 1.0
and mass of 1kg is 0.5 s, its stiffness is then
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Figure 3 Absolute energy time histories for SDOF (T=0.5 s,
case ({=0%); (b) damped case (£=2%)

= 1.0) subjected to rectangular pulse ground excitation: {(a) undamped

Table 1 Comparison of relative energies in undamped and damped example

Time (s)
0.5 1.0 10.0

Energy
(Nm) £=0% £=2% £=0% £=2% £=0% £=2%
E; 0.0361 0.0325 0.0366 0.0329 0.0366 0.0329

A ' 0.0032 0.0020 0.0025 0.0015 0.0030 0.0000
E, 0.0032 0.0032 0.0007 0.0010 0.0002 0.0000
E, 0.0298 0.0261 0.0334 0.0285 0.0326 0.0285
E, 0.0000 0.0011 0.0000 0.0018 0.0000 0.0043

K=Qn/Ty* M=157.91] (N/m) (21) In other words, existing pulse ductility ratio spectra for a

The maximum displacement ductility ratio read from a
pulse spectra, for such a system, is 6.0. Based on equ-
ation (20)

Ey=(6.0-1)1.0x1.0x 1.0)2/157.91 = 0.0317 J
(22)

which is indeed the value obtained in the above example,

bilinear inelastic force—deformation model can easily be
converted into a hysteretic energy spectra for rectangular
pulse loading. Hence, this implies that for rectangular pulse
excitation, the hysteretic energy and displacement ductility
ratio are equivalent structural damage indexes.

A few other such time history examples for SDOF sub-
Jected to pulse excitation, presented elsewhere?!, confirmed
the constancy of the above observations.
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4. Energy response to sine wave excitation

In this section, the energy-related behaviour of SDOF sys-
tems subjected to sine wave excitation will be investigated.
Again, the solution for the linear elastic response of a
SDOF system subjected 10 harmonic loading 1s well
known'#2°. Recall that, for an elastic system, the ratio of
the resultant response amplitude to the static displacement
which would be produced by the force Mii, is called the

dynamic magnification factor, D, and is given by
1
D=[(1- B+ (2912 (23)

where (8 is the ratio of frequencies of applied load to natural
vibration frequency, w/w. At resonance ( B=1). the
dynamic magnification factor is inversely proportional to
the damping ratio, and is infinite for an undamped system.

In this section, an arbitrarily selected sine-wave ground
excitation with amplitude of +1 m/s® and period of 2.0s
is used for all analyses. Again, normalization consider-
ations will be addressed in a subsequent paper. It is note-
worthy that the sine-wave ground motion selected is not
base corrected either, and that, consequently the ground dis-
placement will again increase throughout the time history.
Although this has some influence on absolute input and
Kinetic energies as seen earlier, the other energy terms as
well as the displacement ductility ratio are not affected by
this. Since it is felt that these energy terms are not of major
interest in earthquake-resistant design, base-correction
would produce little additional valuable knowledge and has
again been omitted.

Two examples are presented below t0 illustrate the typi-
cal response of SDOF systems subjected to the sine-wave
ground excitation described above. For these examples.,
only relative displacement and relative energy response
time histories are constructed since they have been shown
to more vividly express structural behaviour. It should be
noted that only undamped response is considered here. The
effect of damping on energy responses 18 expected to be
identical to what has been observed earlier.

In first example, B 18 1 (i.e. the period of structure is
2.0s), and 71 values of 9999 and 2.0 are considered to com-
pare the elastic and inelastic resonant responses. In the
second example, B 1s 0.75 (i.e. the period of the structure
is now 1.5s), and 7 values of 9999 and 2.0 are again used
to obtain elastic and inelastic behaviour, respectively. The
structural mass is arbitrarily taken as 1 kg for both exampl-
es.

4.]. Example with B= 1.0

Figure 4 compares the undamped relative displacement
time histories of SDOF systems having the same period of
2.0s, and m values of 9999 and 2.0. respectively. The elas-
tic system with 1 of 9999, vibrates with an unbounded
amplitude as expected for resonance'®. However, for the
inelastic system with 1 of 2.0. as soon as the yielding thres-
hold is exceeded (here, for the assumed bilinear force—
displacement relationship. A, 1s 0.203 m). though B is still
equal to 1, the response is bounded. i.e. the amplitude of
vibration stops increasing after the first few cycles. Note
that, for the inelastic system. the magnitude of the
maximum value of displacement is asymmetric about the
zero axis, as a consequence of plastic offsets of the at-rest
position introduced by the presence of nonlinear inelastic
excursions. This is well illustrated in Figure 5 for simple

structural hysteresis loops using the bilinear force-
displacement relationship; there, it can be observed that for
loading, unloading and load reversal cycles, the value of
yield displacement is redefined either by deducting 24,
when unloading from the maximum positive inelastic dis-
placement reached, or, reciprocally by adding 2A, to the
minimum negative inelastic displacement reached when
reloading. Moreover. in this case of constant-amplitude-
sine-wave loading, the two redefined yield displacements
do not change from their values of -0.0815m and
0.1568 m, whereas the maximum and minimum displace-
ments are also constant and equal to 0.3245m and
—0.2492 m, respectively, after a few cycles.

Figures 6 and 7 are the relative energy time histories for
1 of 9999 and 2.0, respectively. By comparing these tWO
figures, the following can be observed.

e The elastic system has generally greater energy demands
except for the hysteretic energy which exists only in the
inelastic system. Note that Figures 6 and 7 are plotted
in different scales

e For the elastic system, during the ground motion, the
relative kinetic energy., E., and the strain energy, Es
reciprocally fluctuate within the unbounded envelope of
the input energy, E; (Figure 6)

o For the inelastic system, in the presence of the hysteretic
energy, Ej. during the excitation, the maximum values
of E,and E, reached at each cycle remain stable, in agree-
ment with what is expected by observation of the dis-
placement time history in Figure 4, whereas E, keeps
increasing by a constant value for every half cycle of
the sine wave Joading (Figure 7). This behaviour of the
hysteretic encrgy is substantially different than what was
obtained previously for rectangular pulse excitation. The
harmonic sine-wave ground acceleration excitation
causes structural cyclic inelastic response and stabilizes it
into a fixed pattern past the first few cycles of excitation

o It can easily be verified that the sum of two consecutive
steps in the hysteretic energy time history is equal to the
area under one hysteresis loop

o Energy balance still exists for both structures

4.2. Example with B= 0.75

Figure 8 shows the relative displacement time history of 1
of 2.0 and 9999. For of 9999, the system behaves elasti-
cally with the resulting response being as predicted by the-
ory'®. Also, the system vibrates in a repeated pattern whose
period is the least common multiple of the periods of the
system and the sine-wave ground excitation.

When 7 is 2.0, the yield displacements in the reversed
direction of the hysteresis loops are permanently offset to
—0.0075 m and 0.0843 m, for the same reasons described
in the previous example. The system rapidly becomes
inelastic and the response pattern observed for the elastic
system does not exist. The magnitude of maximum dis-
placement is close to, but slightly less than that of the elas-
tic system (when 71 is 9999).

Figure 9 shows the relative energy time histories for N
values of 9999. The energy histories are bounded and exhi-
bit a particular repetitive pattern. Since energies are related
to the displacement response, the period of each pattern is
also the least common multiple of the periods for the sys-
tem and the load.

For 1 = 2.0 as displayed in Figure 10, the maximum
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Figure 5 Bilinear hysteresis loop model of SDOF subjected to

kinetic and strain energies are not so different from those
obtained for the elastic system, while the resultant
maximum input energy constantly grows as the hysteretic
energy accumulates. By comparing Figure 10 with Figure
7, they are found to be of similar shape, although the
growth of hysteretic energy per cycle is less, i.e. the area
under each hysteretic loop is smaller than before. 4

5. Conclusions

Energy methods proposed by Uang and Bertero® have been
used to calculate energy demands of SDOF systems sub-
jected to rectangular pulse and sine-wave ground exci-
tations. Based on the simple case studies presented here,
some valuable observations on energy methods for use in
earthquake engineering are possible. Namely: energy

4

response for reverse loading;
response for reloading.

sine wave loading

methods produce good indicators of the nonlinear inelastic
seismic structural performance.

The absolute energy method, which has been promoted
by some researchers as superior to the relative energy
method, has some practical shortcomings as illustrated her-
ein, particularly regarding the definition of input and kinetic
energies. As illustrated in the case of pulse excitation, a
conceptual paradox exists in that input energy can still
fluctuate much past the end of the input (i.e. ground) exci-
tation. The relative energy method, for its lack of such
quirks and peculiarities but also for its close relationship
to the parameters of engineering interest, seems a
superior method.

Hysteretic energy, which reflects the cumulative nonlin-
ear inelastic cyclic response, is by far, the most appropriate
energy term to quantify the energy dissipation capacity of
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structures during earthquakes. This makes distinctions
between the absolute and relative energy methods less criti-
cal.

Small amounts of damping energy can significantly
reduce the amount of hysteretic energy dissipated by a
structure.

These observations provide a useful perspective on the
behaviour of various terms of the energy balance equations.
This information is also valuable for the normalization
efforts and other work presented in a subsequent paper.
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